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Abstraet--A thermal energy storage system with a hollow cylinder of Phase Change Material (PCM) was 
studied senti-analytically. The melting of the PCM was solved by using an integral approximate method, 
and heat transfer in the container wall was treated as a radial one dimensional conduction problem. The 
forced convective heat transfer inside the tube was solved by an analytical method, which was coupled 
with the heat conduction in the PCM and the container wall. The results show that the laminar forced 
convective heat transfer inside the tube never reached the fully developed state, even for a very long tube. 
For a tran, fer fluid of moderate Prandtl number, the laminar forced convective transfer inside the tube 

must be solved simultaneously with the phase change of the PCM. 

1. INTRODUCTION 

Interest in utilizint; clean energy sources, such as solar 
energy, is growing because of  environmental con- 
siderations. However,  due to its periodic nature, a 
thermal energy storage device is needed. The latent 
heat thermal energy storage system is a very effective 
device for this prLrpose, because the Phase Change 
Material (PCM) can absorb or release a large amount  
of  heat during its melting or solidification process. 
Figure 1 shows a typical configuration of the latent 
heat thermal energy storage system. The system con- 
sists of  a hollow cylinder of  PCM with a transfer fluid 
flowing inside the inner tube for the purpose of  heat 
exchange. 

Heat transfer in the thermal energy storage system, 
similar to Fig. I, is a conjugate phase-change/ 
convection problem. Hsu and Sparrow [1] presented 
a closed form analytical solution for freezing adjacent 
to plane wall cooled by forced convection. Sparrow 
and Hsu [2] numerically solved the two-dimensional 
(2D) freezing on the outside of  a coolant-carrying 
tube. Shamsundar [3] presented a closed form solution 
of  the same proble~aa by ignoring the sensible heat and 
axial conduction o:~" the PCM. The agreement between 
Shamsundar 's  analytical solution [3] and Sparrow and 
Hsu 's  numerical solution [2] were very good for the 
case with Stefan number Ste = 0. Shamsundar and 
Rooz  [4] presented a numerical solution of  the same 
problem using a firLite element method. Charach et al. 
[5] studied the problem for small Stanton number 
by using a perturbation method. In all of  the above 
investigations, the thickness of the PCM outside the 
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tube was considered to be infinite, which is unrealistic 
from the view point of  the practical application. Inside 
the tube, they assumed that the convective heat trans- 
fer coefficient was uniform and constant. 

A PCM model similar to that in Fig. 1 was studied 
by Solomon et al. [6]. In their model, the PCM outside 
the tube was considered to be a finite thickness, which 
differed with refs. [2 5]. A finite difference for- 
mulation with the Kirchhoff  temperature was used 
to calculate the internal energy, temperature and the 
location of  solid-liquid interface. Cao and Faghri 
numerically simulated the performance of  this thermal 
energy storage system with laminar forced convection 
[7] and turbulent forced convection in the tube [8]. In 
their analyses, the change of  phase of  the PCM and the 
transient forced convective heat transfer were solved 
simultaneously as a conjugate problem. Due to the 
primary concern of  a space-based application, a liquid 
metal with low Prandtl number was used as the trans- 
fer fluid in ref. [7]. Forced convective heat transfer 
inside the tube occurred in the thermal and hyd- 
rodynamic entry region. It was determined that if a 
steady state fully developed heat transfer correlation 
was used to calculate the heat transfer coefficient 
inside the tube, a significant error would be intro- 
duced. Thus, the transient forced convective heat 
transfer in the tube must be solved simultaneously 
with the change of  phase of  the PCM. 

Recently, a Solar Receiver Unit  (SRU),  similar to 
Fig. 1, was studied by Bellecci and Conti [9]. However,  
the outer wall of  the system was not perfectly adiabatic 
since radiative losses were assumed. The S R U  col- 
lected the solar irradiation focused by a concentrator 
on the outer cylinder. In order to check Cao and 
Faghri 's  [7] conclusions, Bellecci and Conti  [9] also 
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NOMENCLATURE 

c specific heat [J kg -~ K -~] t 
D inside diameter of the tube [m] u 
Fo Fourier number, %t/r~ Um 
Gn constant in equations (21) and (22) x 
h local convection heat transfer 

coefficient [W m -2 K -1] X 
H latent heat of melting [J kg ~] 
k thermal conductivity [W m -  ~ K 1] 
K dimensionless thermal conductivity, 

k/kp 
L length of the tube [m] 
M section number of the tube along the 

axial direction 
N section number of the PCM along the 

axial direction 
Nu local Nusselt number, hD/kf 
Pe Peclet number, UmD/C~f 
r coordinate along the radial direction f 

[m] i 
R dimensionless coordinate along the 

radial direction, r/r~ in 
s solid-liquid interface radius [m] o 
S dimensionless solid-liquid interface 

radius, s/ri p 
Ste Stefan number, Cp (Ti°n --  T ° ) / H  w 
T O temperature [K] 
T dimensionless temperature, wo 

(T O -- T°m)/(T° n -- TOm) 

time [s] 
velocity [m s--i] 
average velocity [m s-~] 
coordinate along the axial direction 
[m] 
dimensionless coordinate along the 
axial direction, x/D. 

Greek symbols 
thermal diffusivity [m 2 s-1] 

2n eigenvalues 
p density [kg m-3]. 

Subscripts 
b bulk 

transfer fluid 
inside radius of the tube, or grid point 
in axial direction 
inlet 
outer wall of thermal energy storage 
system 
PCM 
container wall or inner surface of 
container wall 
outer surface of container 
wall. 

" / /  / /  

/ / / / / / / /  / /  / J / f / / / ~  

L w.~.v.~`~..~..~..~v~v.~.~v~..~.~v~.:~.~v~.~.~.~v~v~..v~...~.v~.£~Z.:........~ 
r.v.v.v,v.v...v,.U,v.v.v:.v.:.?v.v.v.v.v.v:v.v.v.v.v...:.?.v.v.?~:.; ....... 

/ ~'/ /'/ / / / / f / # / / / / / / / 

Fig. 1. Schematic of PCM energy storage model with laminar flow inside the tube. 

calculated the melting front position for an adiabatic 
outer wall. The convective heat transfer coefficient 
was quoted from the steady state numerical results of 
Chen and Chiou [10] for liquid metals in the thermal 

and hydrodynamic entry length regions. It can be 
shown that the agreement between their results and 
Cao and Faghri 's [7] results was quite satisfactory. 
Therefore, Bellecci and Conti concluded that the con- 
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vective heat transfer coefficient in the tube can be 
quoted from the steady state results although their 
problem was intrinsically transient. 

Due to economic and safety considerations, water 
is frequently used as a transfer fluid in most low tem- 
perature thermal energy storage systems. Therefore, a 
physical model using water as a transfer fluid will be 
investigated by a conjugate analytical method rather 
than a numerical raethod. The convective heat transfer 
inside the tube is assumed to be in the thermal entry 
region, but the velocity field is assumed to be fully 
developed. The heat transfer in the PCM region and 
the convection inside the tube are solved simul- 
taneously. The necessity of conjugate analysis under 
the influence of different parameters is also discussed. 

2. PHYSICAL MODEL 

The melting of the PCM and the tube-side con- 
vection in a thermal storage system is an unsteady 2D 
problem. In order to solve this problem, the following 
assumptions are necessary. 

(1) The inlet w:locity is fully developed, but heat 
transfer occurs in the thermal entry region. 

(2) Axial conduction of the transfer fluid is neglec- 
ted. 

(3) The quasi-steady assumption is applied to con- 
vective heat transfer inside the tube. Therefore, the 
temperature distribution of the transfer fluid only 
depend on the boundary conditions of the tube but 
are not affected by the temperature distribution of the 
transfer fluid at a previous time step. In other words, 
transient convection in the tube is treated as a series 
of steady state forced convection problems. 

(4) Melting of the PCM in the thermalenergy stor- 
age system is a 2D problem. Since the variation of the 
container wall temperature along the axial direction 
is not very significant, axial conduction in the PCM is 
neglected. 

(5) The initial temperature is assumed to be at the 
freezing temperature of the PCM (no subcooling). 

(6) Since the thickness of the container wall is usu- 
ally very thin, the heat capacity and axial conduction 
of the container wall is neglected. Therefore, heat con- 
duction in the container wall is treated as a steady 
state 1D problem along the radial direction. 

Using the above assumptions, forced convection in 
the tube can be treated as a series of steady state forced 
convection problems. The equations and boundary 
conditions governing incompressible laminar flow 
with no viscous dissipation in the tube are as follows 
[111: 

orp 1 O (rOr°  
U T x = e f r N k ,  Or ] (2) 

T O = T O x = 0 (3) 

T o = T ° r = F i . (4) 

The melting of the PCM can be treated as a series 
of 1D melting problems along the radial direction. 
Therefore, the energy equation for the PCM and the 
boundary conditions are 

OT ° 1 c~ (raT°p~ 
at = ~ 7 gr k, 7 7 r ]  (5) 

a r ° r~ - r°wo 
kprw ar = 1 1 / r w \  r = r~ (6)  

hr7 + Vww In (7i) 

T°=T°m r = s < r o  (7) 

aT ° ds 
- k p  ~rr  = P H ~  r = s < ro (8) 

a r  o 
Or = 0  r = s = r o .  (9) 

The relations between the inner surface temperature 
of the container wall Tw and the outer surface tem- 
perature of the container wall Two will be 

Two) (10) hri( r ° -  T°) _ kw(TOw_ o 
In (rw/ri) 

By defining the following dimensionless variables : 

X r S r w r o 
X = - D  R = -  S = -  R w = - -  Ro= 

ri ri r i r i 

apt kw kf UmD 
F ° = r  7 K w = k  7 K f  = kpp P c =  o{f 

T o o 
Ste = Cp(T°n- T°) T - -- Tm 

H o o 
T i n  - -  T m 

(11) 

the governing equations become : 

~Tf 2 1 L  f R~Tf ~ 
( 1 - R  2 ) ~ - P e R O R \  OR/ (12) 

T = T w ( X )  R =  1 (13) 

T = 1 X = 0 (14) 

arp 1 a (Rarp) 
O F o - R  aRk, OR] (15) 

0 T p  = Tb-- Two 
R = Rw (16) 

aR Rw Rw In Rw 

K ~  + Xw 

T p = 0  R = S < R o  (17) 

dS aTp 
dFo S t e ~  R = S < Ro (18) 

arp 
aR - O R = S =  Ro (19) 
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KrNu( Tb -- Tw) -- 
Kw(T~ - Two) 

I n  R w  

3. SOLUTIONS 

3.1. Forced convection in the tube 
Forced convective heat transfer in the tube result in 

neither constant wall temperature nor constant heat 
flux boundary conditions. It should instead be treated 
as a forced convection problem with an arbitrarily 
varied wall temperature. The inlet temperature of the 
thermal energy storage system is Tj~ = 1 and the wall 
temperature varied (T~,~ at X = 0). Therefore, the wall 
temperature variation at X = 0  is AT~,~ = Tw,~ 
- 1, and the container wall temperature varies along 
the axial direction continuously• The full length of 
the tube is divided into N sections. Therefore, it is 
assumed that every section has a uniform temper- 
ature. In other words, the wall temperature variation 
along the axial direction is treated as discontinuous 
variations. For example, the dimensionless wall tem- 
perature at a section i and i + I  are Tw,~ and Tw.,+~, 
respectively, and the wall temperature variation at 
X = i. AXis A T e , i +  1 = Tw,i+ 1 - -  Tw, i. I fN is sufficiently 
large, the wall temperature variation, A Tw., +~, at every 
section will be very small. This model can accurately 
describe the continuous variation of the container wall 
temperature. 

After the above treatment, the local Nusselt number 
will be obtained by an analytical method which is 
described by Kays and Crawford [11]. The final result 
is rewritten as: 

Nu(X) = 

22n z 7 k k 
i=1 n = 0  

4 L ATw,i Z -~-exp ( X - ( i - I ) A X )  
,=, .=o zn L Pe A 

The bulk temperature of the transfer fluid is 

where the values of constant G n and eigenvalues 2. 
can be found in [11], and the value o f j  in equations 
(21) and (22) can be determined by 

j = i n t  ~ +1 (23) 

where int in equation (23) is an integer function. 

3.2. Heat transJer in the PCM 
The full length of the PCM and container wall is 

divided into M sections. Since the axial conduction in 

the PCM and container wall has been neglected, the 
(20) heat transfer in the PCM in every section can be 

respectively treated as a 1D problem. Due to the exis- 
tence of an adiabatic outer container wall, melting in 
the PCM region occurs in a finite region. Thus, the 
heat transfer in the PCM can be divided into two 
stages. Before the melting front reaches the adiabatic 
shell, a melting process occurs in the PCM. After the 
melting front reaches the adiabatic shell, the melting 
process ceases, and heat transfer in the PCM becomes 
a pure heat conduction problem. Heat conduction in 
the PCM, with and without phase change, can be 
solved by an integral approximation method. 

Since it is assumed that the PCM is not subcooled, 
the melting of the PCM is a single-phase problem• 
Therefore, we can assume the temperature dis- 
tribution in the liquid region of the PCM has a second- 
order logarithmic function of the form 

_ I-In (R/Rw)l ._ , [ In  (R/Rw)l 2 
T. = Iwo+ LF  j-C*.o+ 0 Lln(S/R.) 3 

(24) 

where Two is the outer surface temperature of the con- 
tainer wall. Equation (24) can satisfy equations (16) 
and (17) automatically, and ~p can be obtained by 
differentiating equation (17) [12] : 

~Tp dS C~Tp 
8R dFo + 8F~o = 0. (25) 

Substituting equations (15) and (18) into equation 
(25), the following expression is obtained : 

Z T.\ 1 (ROT4 
- S t e ~ )  + R S R \  - ~ - ) = 0 .  (26) 

Substituting equation (24) into equation (26), an 
expression for q~ is derived : 

x/(l + 2TwoSte) - 1 (27) 
(21) 2T~o + q~ = Ste 

Substituting equations (24) and (27) into equation 
(18), the location of the melting front can be expressed 
a s  

dS = ~/(1 +2TwoSte)- 1 
(28) 

dFo Sin (S/Rw) 

Integrating equation (28) in the time interval (0, Fo) 
gives 

~sl 21nRwwS _ ~(S2_R~w) 

f 
F o  

= (x/(1 +2TwoSte)-- 1) dFo. (29) 
0 

The dimensionless temperature gradient at the outer 
surface of container wall then becomes 
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•Tp 
OR R=R~ 

1 (2Two -- ~/(1 +2TwoSte) -- 1"~ 
Rw In (S/Rw) S~e -]. (30) 

Substituting equation (30) into equation (16), the 
outer surface temperature of the container wall is 
obtained. 

After the melting front reaches the adiabatic shell, 
heat transfer in the PCM becomes a pure conduction 
problem with a boundary condition of the first kind 
at the inner boundary (R = Rw) and an adiabatic 
boundary condition at the outer boundary (R = Ro). 
Therefore, it can be assumed that the temperature 
profile in the liquid PCM is as follows : 

,, [- In (R/Rw) ] [- In (R/Rw) ]2 

Equation (31) car~ satisfy the boundary condition at 
the inner wall and outer wall automatically, and q can 
be obtained from an integral equation. Integrating 
equation (15) on the interval (Rw, Ro), and using the 
boundary conditions, equation (19), the integrated 
energy equation for the PCM will become 

dO c~Tp 
d~=o = - Rw ~ -  R = R~ (32) 

where 

~R ° 
,~9 = RTp dR. (33) 

w 
Substituting equation (31) into equation (32), the 

following relation for q is obtained : 

F- R~°--R~w Rw 2o 
[_4[ln (Ro/Rw)] 2 2 In (Ro/Rw) 

dr/ 2 Ro 2 - R  2 dT~o 

× dFo In (R,,/Rw) rl + 2 dFo - O. 

The initial condition for t/must satisfy the total sens- 
ible heat of PCM varied continually with time. If it 
can be assumed that the melting front reached the 
adiabatic shell at Fo = Foo, the initial value of q can 
be determined by the following equation [12] : 

f Ro fR ~° RTv(R, Fo~-)dR= RTp(R, Fo+o )dR (35) 
,) R ~  w 

where Tp(R, Fo2) and Tp(R, Foo +) in equation (35) 
can be calculated by equations (24) and (31), respec- 
tively. The temperature gradient at the container wall 
outer surface is 

= 211 

OR R= Rw Rw In (Ro/Rw)" 

By substituting equation (36) to equation (16), the 
outer surface temperature of the container wall is 
obtained. 

3.3. Solution procedure 
The calculation is started at Fo = 0. For any time 

step, the problem can be solved by the following pro- 
cedure : 

(1) Guess a distribution of the inner surface tem- 
perature of the container wall along the axial direction 
Tw(X). 

(2) Calculate Nu(x) and Tb(X) for different 
locations of the axial coordinate X. 

(3) Calculate the distribution of the outer surface 
temperature of the container wall along axial direction 
Two(X) by equation (20). 

(4) Calculate the location of the melting front and 
dimensionless temperature gradient at the outer sur- 
face of the container wall for different locations of the 
axial coordinate X. 

(5) Solve equations (16) and (20) to obtain the 
variations of the inner surface temperature of the con- 
tainer wall T'w(X). 

(6) Compare the assumed inner surface tem- 
perature of the container wall Tw(X) and the cal- 
culated value T'w(X). If ITw(X)-Tw(X)[m,x ~ 10 5, 
calculate the next time step. If not, return to step (1). 

During the iteration of T~, underrelaxation is 
necessary. The underrelaxation factor used is 0.8. The 
grid size used for the calculation was N = 50 and 
M = 150 with the dimensionless time step AFo = 0.05. 
Calculations using finer grid size ( N =  100 and 
M = 300) and smaller time step (AFo = 0.02) were 
also performed for some cases. The melting fronts 
obtained by finer grids and smaller time steps showed 
only 0.5% difference compared with present grid size 
and time step. 

4. RESULTS AND DISCUSSION 

(34) Since paraffins have been widely used in low tem- 
perature thermal storage systems, the PCM used in 
the following calculations is n-octadecane. The trans- 
fer fluid inside the tube is water, and the container 
wall is made of metal with a high thermal conductivity 
(Kw = 1000). 

Before studying the heat transfer in the thermal 
energy storage system with conjugate laminar forced 
convection, the semi-analytical solution is verified by 
numerical solution. The present authors numerically 
studied the heat transfer enhancement in latent heat 
thermal energy storage system by using external radial 
finned tubes [13]. The structure of the thermal energy 
storage system studied in [13] was similar to Fig. 1 
but external radial fins were added in the PCM region. 
Melting in the PCM was solved by using a temperature 

(36) transforming model [14], and the forced convection 
inside the tube was solved by the same method as the 
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Semi*analytical Numerical [13) Pe = 4000 Ste = 0.5 
o F~0 .25  × Fo=0.25 Kf  = 4.0 
O Fo= l .0  o Fo= l .0  Kw = 1000 
~, Fo=2.0 v Fo=2.0 L/D = 50 
+ Fo=4.0 Ill Fo=4.0 Rw = 1.15 
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lb 2b 3b 4b 50 
x 

Fig. 2. Comparison of melting fronts obtained by the semi- 
analytical solution and the numerical solution of [I 3]. 
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Fig. 4. Melting fronts along the axial direction for different 
thermal conductivities of the container wall at Fo = 4. 
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Fig. 3. Melting fronts along the axial direction for different 
Peclet numbers at Fo = 4. 
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Fig. 5. Inner surface temperature of container wall along 
axial direction for different Fourier number. 

present paper. Figure 2 shows the comparison of the 
melting front obtained by the present solution and the 
numerical solution of ref. [13]. Clearly, the differences 
between the present semi-analytical solution and the 
numerical solution in ref. [13] are very small, 
especially for F o  = 0.25, 1.0 and 2.0. For F o  = 4.0, 
the radius of the melting front obtained by the present 
semi-analytical solution is slightly smaller than that 
obtained by the numerical solution due to the effect 
of axial conduction, which is not considered in the 
present paper. However, the difference between the 
present semi-analytical solution and the numerical 
solution is very small even for F o  = 4.0. Therefore, 
the assumptions of neglecting the effect of axial in the 
PCM and container wall are acceptable approxi- 
mations. 

As can be seen from Fig. 2, the melting velocity for 
a smaller X is faster than the velocity for a larger X, 
because the local Nusselt number and the temperature 
of the transfer fluid for a smaller X is higher than the 
value for a larger X. For F o  = 4.0, the melting front 
at the entry of the tube reached the outer container 
wall. However, the variation of melting fronts at 
different X are not significant. Figure 3 shows the 
melting fronts for different Peclet numbers at 
F o  = 4.0. With small Peclet numbers, heat transfer to 
the PCM is much slower as indicated in Fig. 3. The 
melting fronts for different container wall thermal 

conductivities are shown in Fig. 4. The effect of ther- 
mal resistance in the container wall on the melting 
front is negligibly small. 

Figure 5 shows the variation of the inner surface 
temperature of the container wall along the axial 
direction for different Fourier numbers. It can be seen 
that the temperature decreases along the axial direc- 
tion. The temperature gradient along the axial direc- 
tion in the beginning stage is large, but decreases with 
time. For large Fourier numbers, the decrease in tem- 
perature along the axial direction is nearly linear 
except at the entrance of the tube. 

Figures 6-8 show the local Nusselt number along 
the axial direction for different dimensionless lengths 
of the tube. Local Nusselt numbers for laminar forced 
convection under the boundary conditions of Con- 
stant Wall Temperature (CWT) and Constant Heat 
Flux (CHF) are also given in Figs. 6-8 for compari- 
son. The local Nusselt number increases with the 
Fourier number. For the full length of the tube, the 
local Nusselt numbers are neither equal to the value 
for the CWT boundary condition, or to that for the 
CHF boundary condition. The local Nusselt numbers 
at the entrance of the tube are close to the values 
corresponding to CWT. For larger X, the local Nusselt 
numbers approach the value corresponding to CHF. 
The local Nusselt numbers are closer to the value of 
the CHF boundary condition for the longer tube. 
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Fig. 6. Local Nusselt numbers along the axial direction for 
different Fourier numbers (LID = 20). 
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Fig. 7. Local Nusselt numbers along the axial direction for 
different Fourier numbers (LID = 50). 
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0 20 40 60 80 100 
X 

Fig. 8. Local Nusselt iaumbers along the axial direction for 
different Fourier numbers (L/D = I00). 

Also, at the end of  the tube for L/D = 100, the heat 
transfer still has not reached a thermally fully 
developed state. The refore, if the fully developed Nus- 
selt correlation was used to calculate the heat transfer 
from the transfer fluid to the container wall, a sig- 
nificant error would be introduced. 

Bellecci and Cont!L [9] have calculated similar prob- 
lems numerically in order to check Cao and Faghri 's  
[7] conclusions. However,  a liquid metal was used as 
the transfer fluid. According to Bellecci and Conti 's  
[9] results for the lhermal and velocity developing 
state described by Cao and Faghri  [7], the local Nus- 

selt number can be calculated by steady state numeri- 
cal results under the C H F  boundary condition [10], 
even though their problem was intrinsically transient. 
As can be seen from Fig. 8, the local Nusselt numbers 
are closer to the values associated with the C H F  
boundary condit ion for the dimensionless length of  
the tube LID = 100. This means that for the very long 
tube (LID >>- 100), the local Nusselt number predicted 
by the present model will approach the local Nusselt 
number quoted from steady state numerical results. 
However,  a much longer tube will be meaningless for 
practical applications. Therefore, for thermal energy 
storage systems with laminar forced convection, if  a 
fluid with moderate Prandtl number, such as water, is 
used as the transfer fluid, the local Nusselt number 
should be calculated by the present simplified ana- 
lytical model, or by Cao and Faghri 's  numerical model 
[7] which accounts for the thermal development 
region. 

5 .  C O N C L U S I O N S  

A thermal energy storage system with the con- 
figuration shown in Fig. 1 has been studied semi- 
analytically. The transfer fluid and the P C M  studied 
were water and paraffin respectively, since these are 
prevalent in engineering applications. The results 
show that convective heat transfer inside the tube 
never reached the fully developed state, even for a 
very long tube (L/D = 100). The local Nusselt number 
can not be accurately calculated using correlations 
for the thermal entry region under C H F  boundary 
conditions, except for very long tubes (LID ~ 100). 
Therefore, the laminar forced convective heat transfer 
from a transfer fluid of  moderate Prandtl number 
must be solved as a conjugate problem with the change 
of  phase of  the PCM. 
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